Abstract
In this study, the effect of pore size in the opaque poly(methyl methacrylate) and its composition is investigated by optical measurements as well as Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analyses. The enhancement of the absorption coefficient induced by the presence of micrometric beads makes these porous thin foils high absorbent to IR radiation and suitable to be laser irradiated in order to generate a hot plasma rich in proton emission. The presented results indicate that the high optical transparency of PMMA foils can be strongly reduced by the presence of the micrometric acrylic beads and that the presence of high Z-metallic nanoparticles, such as gold, embedded in the polymer enhances the acceleration of emitted ions. The fabricated advanced targets have been irradiated by lasers at low intensity (Messina University) and at high intensity (PALS Research Infrastructure in Prague) generating plasma accelerating high proton yield and energy.