A SIMPLIFIED TWO-NODE COARSE-MESH FINITE DIFFERENCE METHOD FOR PIN-WISE CALCULATION WITH SP3

Author:

Zhao Wenbo,Yu Yingrui,Chai Xiaoming,Ning Zhonghao,Zhang Bin,Cai Yun,Liu Kun,Peng Xingjie,Yu Junchong

Abstract

For accurate and efficient pin-by-pin core calculation of SP3 equations, a simplified two-node Coarse Mesh Finite Difference (CMFD) method with the nonlinear iterative strategy is proposed. In this study, the two-node method is only used for discretization of Laplace operator of the 0th moment in the first equation, while the fine mesh finite difference (FMFD) is used for the 2nd moment flux and the second equation. In the two-node problem, transverse flux is expanded to second-order Legendre polynomials. In addition, the associated transverse leakage is approximated with flat distribution. Then the current coupling coefficients are updated in nonlinear iterations. The generalized eigenvalue problem from CMFD is solved using Jacobi-Davidson method. A protype code CORCA-PIN is developed. FMFD scheme is implemented in CORCA-PIN as well. The 2D KAIST 3A benchmark problem and extended 3D problem, which are cell homogenized problems with strong absorber, are tested. Numerical results show that the solution of the simplified two-node method with 1×1 mesh per cell has comparable accuracy of FMFD with 4×4 meshes per cell, but cost less time. The method is suitable for whole core pin-wise calculation.

Publisher

EDP Sciences

Reference11 articles.

1. Advanced PWR Core Calculation Based on Multi-group Nodal-transport Method in Three-dimensional Pin-by-Pin Geometry

2. Acceleration of the exponential function expansion nodal SP3 method by multi-group GMRES algorithm for PWR pin-by-pin calculation

3. Calloo A., Couyras D., Fevotte F., et al, “COCAGNE: EDF New Neutronic Core Code for ANDROMEDE Calculation Chain,” M&C 2017, Jeju, Korea (2017).

4. Ning Z., Three-dimensional fine mesh flux expansion nodal method based on non-linear iterative strategy, Nuclear Power Institute of China, Chengdu, China (2016).

5. Development of 3-D HCMFD algorithm for efficient pin-by-pin reactor analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3