A FULL REFERENCE APOLLO3® DETERMINISTIC SCHEME FOR THE JHR MATERIAL TESTING REACTOR

Author:

Lebreton Matthieu,Politello Julien,Vidal Jean-François,Rimpault Gérald

Abstract

JHR is a new material testing reactor under construction at CEA Cadarache. Its high flux core contains 37 fuel assemblies loaded along concentric rings into alveolus of an aluminum matrix. For the operation of the reactor, twenty-seven of these fuel assemblies hovnst hafnium rods in their center while the other ones but also the beryllium radial reflector can accommodate experimental devices. In order to accurately predict its operating core characteristics but also its irradiation performance, a recently developed scheme based on the APOLLO3® platform is being developed which uses the sub-group method for spatial self-shielding, the 2D method of characteristics and the 3D unstructured conform MINARET Sn transport solver. A 2D model of JHR has been built and optimized for calculating, at the lattice step, the self-shielded and condensed cross sections thanks to the sub-group method and the method of characteristics. Results are benchmarked against a TRIPOLI-4® stochastic reference calculation. A more refined spatial mesh gives better results on fission rates and reactivity compared to the ones of the former APOLLO2 scheme. The classical 2-step calculations use the hypothesis of infinite lattice configuration, which is reasonable for the assemblies close to the center but not for peripheral ones. Hence, a new approach is being set up taking into account the surrounding of each assembly. The newly 3-step scheme uses the Sn solver MINARET and gives better results than the traditional 2-step scheme. This approach will be applied to a 3D modelling of the heterogeneous JHR core configurations incorporating experimental devices and enabling burn up calculations.

Publisher

EDP Sciences

Reference13 articles.

1. Politello J. et al., “JHR neutron deterministic calculation scheme improvement thanks to Monte Carlo analysis in depletion,” presented at the PHYSOR2018, Cancun, Mexique, 2018.

2. Jeury F. et al., “HORUS3D/N Neutron Calculation Tool, a Deterministic Scheme Dedicated to JHR Design and Safety Studies,” Nuclear Science and Engineering, vol. 189, Feb. 2018.

3. APOLLO II: A User-Oriented, Portable, Modular Code for Multigroup Transport Assembly Calculations

4. Akherraz B. et al., “Saphyr: a code system from reactor design to reference calculations,” presented at the International conference on supercomputing in nuclear applications SNA’2003, Paris (France), 2003.

5. The Monte Carlo Method

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3