ON THE EFFECT OF FINE-SCALE RADIAL VOID DISTRIBUTIONS ON ASSEMBLY CRITICALITY AND PIN POWER DISTRIBUTION

Author:

Price Dean,Gacek Andrew,Kozlowski Tomasz,Radaideh Majdi I.

Abstract

The assumption that void fraction, and by extension coolant density, is uniform in the radial direction is a common approximation used in lattice physics simulations. In this study, models without uniform radial void fraction are used and lattice criticality and pin powers are investigated in two ways. One way uses hypothetical models that reflect extreme radial void distributions; modifications such as uniform radial pin enrichment and the removal of gadolinium rods are included in these models as well. Experimentally-determined boiling water reactor radial void distributions are also replicated in neutronics models using Serpent 2. It is found in the hypothetical models that the presence of gadolinium rods has a large effect on the interaction between lattice criticality and radial void distribution. It was also found that considering experimental radial void fraction distributions had the largest effect on the pin power of the rods containing gadolinium. Furthermore, it is observed that considering realistic radial void distributions, in general, decreased lattice criticality. The reason can be attributed that to the passive negative-feedback design of light water reactors. These are useful findings because calculation of more accurate peaking factors can lead to efficient and yet safer reactor operation.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3