Author:
Endo Tomohiro,Imai Sho,Watanabe Kenichi,Yamamoto Akio,Sakon Atsushi,Hashimoto Kengo,Yamanaka Masao,Pyeon Cheol Ho
Abstract
From zero-power reactor noise measurement, the second- and third-order neutron correlation factors Y and y3 can be evaluated by analyzing mean, variance, the third-order central moment of neutron count data. Theoretically, it is expected that the neutron-correlation ratio y3/Y2 converges to the unique combination number “3” at a near-critical state in an arbitrary system without depending on the fissile material and the neutron-energy spectrum of core, as the neutron counting gate width T increases sufficiently. Thus, the information about the difference between y3/Y2 and “3” has the potential to judge whether a target unknown system is critical or not and to roughly guess the absolute value of subcriticality. In this study, the detector dead-time effect on y3/Y2 is theoretically investigated based on the heuristic method using the single-, pair-, and trio-detection probabilities with the fundamental mode approximation. As a result, it is clarified that the saturation value of y3/Y2 converges to “3” independent of the dead time, when a target system is a critical state. For validation, actual experimental results are presented for a non-multiplication system driven by 252Cf spontaneous source, and shallow and deep subcritical systems at Japanese experimental facilities (UTR-KINKI and KUCA) under the shutdown state. Consequently, it is demonstrated that y3/Y2 shows a significant difference from “3” in the non-multiplication system. In the case of subcritical systems driven by inherent neutron sources, it is confirmed that the ratios y3/Y2 are close to the unique combination number “3,” and the slight difference from “3” is measurable by the long-time reactor noise measurement for the deep subcritical system.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献