IMPLEMENTATION OF AN AUTONOMOUS REACTIVITY CONTROL SYSTEM IN A SMALL LEAD-COOLED FAST REACTOR

Author:

Dehlin Fredrik,Acharya Govatsa,Bortot Sara,Mickus Ignas

Abstract

This paper describes the design, implementation and characterisation of an Autonomous Reactivity Control (ARC) system in a small modular lead-cooled fast reactor. The aim of this work was to demonstrate the applicability of the ARC system and to study its dynamic behaviour during an anticipated transient without scram. A simplified one-dimensional model was developed to calculate the heat transfer within the ARC system, and the reactivity worth as a function of the neutron poison’s insertion into the active core was obtained via static neutronic calculations. By coupling the aforementioned models, the ARC’s time-dependent reactivity was derived as a function of the coolant outlet temperature variation. This model was implemented into the BELLA multi-point dynamics code and transient simulations were run. A control rod ejection accident was studied leading to an unprotected transient overpower scenario, in which 350 pcm reactivity was inserted during one second. It was shown that the ARC system provides a forceful negative reactivity feedback and that steady-state temperatures after the transient were reduced by almost 300 K compared to an identical transient without its action. In this scenario, the ARC system managed to stabilise the coolant outlet temperature at a value 100 K above nominal conditions. The implementation of an ARC system provided the reactor with a passively actuated self-regulating reactivity control system able to insert large amounts of negative reactivity in a short amount of time.

Publisher

EDP Sciences

Reference15 articles.

1. IPCC. “Summary for Policymakers.” In Masson-Delmotte P. Z. V. and Pörtner H. O., editors, Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland (2018).

2. An Autonomous Reactivity Control system for improved fast reactor safety

3. Autonomous Reactivity Control (ARC) — Principles, geometry and design process

4. Tailoring the response of Autonomous Reactivity Control (ARC) systems

5. LeadCold Reactors. “SEALER-UK plant design submitted for review.” URL https://www.leadcold.com/sealer-uk-design-submitted.html.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3