NUMA-AWARE DATA MANAGEMENT FOR NEUTRON CROSS SECTION DATA IN CONTINUOUS ENERGY MONTE CARLO NEUTRON TRANSPORT SIMULATION

Author:

Denoyelle Nicolas,Tramm John,Yoshii Kazutomo,Perarnau Swann,Beckman Pete

Abstract

The calculation of macroscopic neutron cross-sections is a fundamental part of the continuous-energy Monte Carlo (MC) neutron transport algorithm. MC simulations of full nuclear reactor cores are computationally expensive, making high-accuracy simulations impractical for most routine reactor analysis tasks because of their long time to solution. Thus, preparation of MC simulation algorithms for next generation supercomputers is extremely important as improvements in computational performance and efficiency will directly translate into improvements in achievable simulation accuracy. Due to the stochastic nature of the MC algorithm, cross-section data tables are accessed in a highly randomized manner, resulting in frequent cache misses and latency-bound memory accesses. Furthermore, contemporary and next generation non-uniform memory access (NUMA) computer architectures, featuring very high latencies and less cache space per core, will exacerbate this behaviour. The absence of a topology-aware allocation strategy in existing high-performance computing (HPC) programming models is a major source of performance problems in NUMA systems. Thus, to improve performance of the MC simulation algorithm, we propose a topology-aware data allocation strategies that allow full control over the location of data structures within a memory hierarchy. A new memory management library, known as AML, has recently been created to facilitate this mapping. To evaluate the usefulness of AML in the context of MC reactor simulations, we have converted two existing MC transport cross-section lookup “proxy-applications” (XSBench and RSBench) to utilize the AML allocation library. In this study, we use these proxy-applications to test several continuous-energy cross-section data lookup strategies (the nuclide grid, unionized grid, logarithmic hash grid, and multipole methods) with a number of AML allocation schemes on a variety of node architectures. We find that the AML library speeds up cross-section lookup performance up to 2x on current generation hardware (e.g., a dual-socket Skylake-based NUMA system) as compared with naive allocation. These exciting results also show a path forward for efficient performance on next-generation exascale supercomputer designs that feature even more complex NUMA memory hierarchies.

Publisher

EDP Sciences

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3