FEW-GROUP CROSS SECTIONS MODELING BY ARTIFICIAL NEURAL NETWORKS

Author:

Szames E.,Ammar K.,Tomatis D.,Martinez J.M.

Abstract

This work deals with the modeling of homogenized few-group cross sections by Artificial Neural Networks (ANN). A comprehensive sensitivity study on data normalization, network architectures and training hyper-parameters specifically for Deep and Shallow Feed Forward ANN is presented. The optimal models in terms of reduction in the library size and training time are compared to multi-linear interpolation on a Cartesian grid. The use case is provided by the OECD-NEA Burn-up Credit Criticality Benchmark [1]. The Pytorch [2] machine learning framework is used.

Publisher

EDP Sciences

Reference14 articles.

1. Barreau A.. “Burn-up Credit Criticality Benchmark.” Technical Report Phase, IID, OECDNEA (2006).

2. Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin Z., Desmaison A., Antiga L., and Lerer A.. “Automatic differentiation in PyTorch.” NIPS (2017).

3. APOLLO2 YEAR 2010

4. Grundmann U. et al. “DYN3D version 3.2 - code for calculation of transients in light water reactors (LWR) with hexagonal or quadratic fuel elements - description of models and methods -.” Wissenschaftlich-Technische Berichte (2019).

5. Cross-section parameterization of the pebble bed modular reactor using the dimension-wise expansion model

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3