Author:
Pautz Andreas,Zwermann Winfried
Abstract
Cold-startup and hot-standby reactivity accident tests conducted at the SPERT III E-core research reactor are analysed with the coupled neutron-kinetic/thermal-hydraulic code system DYN3D-ATHLET. Homogenised 2-group cross sections for DYN3D are thereby generated with the Monte Carlo neutron transport code Serpent 2 in combination with the ENDF/B-VII.1 cross section library. Results in terms of maximum power, energy release, and reactivity compensation are in good agreement with the experimental values. The time-dependent contributions to the reactivity feedback are investigated for both a cold-startup test and a hot-standby test. These findings prove the suitability of the combined application of the simulation codes to predict the reactor dynamic behaviour in the event of prompt-critical and super-prompt critical transients even for small reactor cores. Furthermore, static core characteristics of the SPERT III E-core reactor at cold-startup condition are analysed with using a static DYN3D model, a detailed Serpent reference model, and a simplified Serpent model consistent with the DYN3D model. The critical control rod position and the excess reactivities of both the control rods and the transient rod obtained with the Serpent reference model are consistent with the experimental values. For the same parameters, the DYN3D model is in good agreement with the Serpent simplified model.