Induction and repair of DNA double-strand breaks in hippocampal neurons of miсe of different age after exposure to 60Со γ-rays in vivo and in vitro

Author:

Kozhina R.A.,Chausov V.N.,Kuzmina E.A.,Boreyko A.V.

Abstract

One of the central problems of modern radiobiology is the study of DNA damage induction and repair mechanisms in central nervous system cells, in particular, in hippocampal cells. The study of the regularities of molecular damage formation and repair in the hippocampus cells is of special interest, because these cells, unlike most cells of the central nervous system (CNS), keep proliferative activity, i.e. ability to neurogenesis. Age-related changes in hippocampus play an important role, which could lead to radiosensitivity changes in neurons to the ionizing radiation exposure. Regularities in DNA double-strand breaks (DSB) induction and repair in different aged mice hippocampal cells in vivo and in vitro under the action of γ-rays 60Со were studied with DNA comet-assay. The obtained dose dependences of DNA DSB induction are linear both in vivo and in vitro. It is established that in young animals' cells, the degree of DNA damage is higher than in older animals. It is shown that repair kinetics is basically different for exposure in vivo and in vitro.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3