Numerical Precision Effects on GPU Simulation of Massive Spatial Data, Based on the Modified Planar Rotator Model

Author:

Lach Matúš,Borovský Michal,Žukovič Milan

Abstract

The present research builds on a recently proposed spatial prediction method for discretized two-dimensional data, based on a suitably modified planar rotator (MPR) spin model from statistical physics. This approach maps the measured data onto interacting spins and, exploiting spatial correlations between them, which are similar to those present in geostatistical data, predicts the data at unmeasured locations. Due to the shortrange nature of the spin pair interactions in the MPR model, parallel implementation of the prediction algorithm on graphical processing units (GPUs) is a natural way of increasing its efficiency. In this work we study the effects of reduced computing precision as well as GPU-based hardware intrinsic functions on the speedup and accuracy of the MPR-based prediction and explore which aspects of the simulation can potentially benefit the most from the reduced precision. It is found that, particularly for massive data sets, a thoughtful precision setting of the GPU implementation can significantly increase the computational efficiency, while incurring little to no degradation in the prediction accuracy.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3