Author:
Minkov Nikolay,Pálffy Adriana
Abstract
We examine the physical conditions, and specifically the role of the quadrupole-octupole deformation, for the emergence of the 8 eV “clock” isomer 229mTh. Our nuclear structure model suggests that such an extremely low-energy state can be the result of a very fine interplay between the shape and single-particle (s.p.) dynamics in the nucleus. We find that the isomer can only appear in a rather limited region of quadrupoleoctupole deformation space close to a line along which the ground-state and isomer s.p. orbitals 5/2[633] and 3/2[631], respectively, cross each other providing the isomer-formation quasi-degeneracy condition. The crucial role of the octupole deformation in the formation mechanism is pointed out. Our calculations within the outlined deformation region show a smooth behaviour of the 229Th electromagnetic properties, including the isomer decay rate, allowing for their more precise theoretical determination