Deploying a new realtime XRootD-v5 based monitoring framework for GridPP

Author:

Currie Robert,Yuan Wenlong

Abstract

To optimise the performance of distributed compute, smaller lightweight storage caches are needed which integrate with existing grid computing workflows. A good solution to provide lightweight storage caches is to use an XRootD-proxy cache. To support distributed lightweight XRootD proxy services across GridPP we have developed a centralised monitoring framework. With the v5 release of XRootD it is possible to build a monitoring framework which collects distributed caching metadata broadcast from multiple sites. To provide the best support for these distributed caches we have built a centralised monitoring service for XRootD storage instances within GridPP. This monitoring solution is built upon experiences presented by CMS in setting up a similar service as part of their AAA system. This new framework is designed to provide remote monitoring of the behaviour, performance, and reliability of distributed XRootD services across the UK. Effort has been made to simplify ease of deployment by remote site administrators. The result of this work is an interactive dashboard system which enables administrators to access real-time metrics on the performance of their lightweight storage systems. This monitoring framework is intended to supplement existing functionality and availability testing metrics by providing detailed information and logging from a site perspective.

Publisher

EDP Sciences

Reference13 articles.

1. The GridPP Collaboration, GridPP: development of the UK computing Grid for particle physics, J. Phys. G 32 N1-N20 (2006)

2. GridPP: the UK grid for particle physics

3. XRootD, http://www.xrootd.org (2021), accessed: 2021-02-01

4. Currie R., Li T., Washbrook A., EPJ Web of Conferences 214, 04047 (2019)

5. Worldwide LHC Computing Grid (WLCG), http://wlcg.web.cern.ch (2021), accessed: 2021-02-01

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3