Convolutional LSTM models to estimate network traffic

Author:

Waczyńska Joanna,Martelli Edoardo,Vallecorsa Sofia,Karavakis Edward,Cass Tony

Abstract

Network utilisation efficiency can, at least in principle, often be improved by dynamically re-configuring routing policies to better distribute ongoing large data transfers. Unfortunately, the information necessary to decide on an appropriate reconfiguration—details of on-going and upcoming data transfers such as their source and destination and, most importantly, their volume and duration—is usually lacking. Fortunately, the increased use of scheduled transfer services, such as FTS, makes it possible to collect the necessary information. However, the mere detection and characterisation of larger transfers is not sufficient to predict with confidence the likelihood a network link will become overloaded. In this paper we present the use of LSTM-based models (CNN-LSTM and Conv-LSTM) to effiectively estimate future network traffic and so provide a solid basis for formulating a sensible network configuration plan.

Publisher

EDP Sciences

Reference17 articles.

1. Karavakis E., Manzi A., Rios M.A., Keeble O., Cabot C.G., Simon M., Patrascoiu M., A. Angelogiannopoulos, FTS improvements for LHC Run-3 and beyond, EPJ Web of Conferences 245 (2020)

2. Waczynska J., Martelli E., Karavakis E., Cass T., NOTED: a framework to optimize the network traffc via theanalysis of data set from transfers services as FTS., Paper presented to vCHEP 2021s (2021)

3. Nelson C., Hapke H., Building Machine Learning Pipelines by Hannes Hapke (O’Reilly Media, 2020)

4. Lazaris A., Prasanna V.K., An LSTM Framework For Modeling Network Traffc, in 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (2019), pp. 19–24

5. Improve throughput, https://fts3-docs.web.cern.ch/fts3-docs/docs/ (2020), accessed: 15.12.2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3