Fast and Accurate Electromagnetic and Hadronic Showers from Generative Models

Author:

Buhmann Erik,Diefenbacher Sascha,Eren Engin,Gaede Frank,Hundhausen Daniel,Kasieczka Gregor,Korcari William,Korol Anatolii,Krüger Katja,McKeown Peter,Rustige Lennart

Abstract

Generative machine learning models offer a promising way to efficiently amplify classical Monte Carlo generators’ statistics for event simulation and generation in particle physics. Given the already high computational cost of simulation and the expected increase in data in the high-precision era of the LHC and at future colliders, such fast surrogate simulators are urgently needed. This contribution presents a status update on simulating particle showers in high granularity calorimeters for future colliders. Building on prior work using Generative Adversarial Networks (GANs), Wasserstein-GANs, and the information-theoretically motivated Bounded Information Bottleneck Autoencoder (BIB-AE), we further improve the fidelity of generated photon showers. The key to this improvement is a detailed understanding and optimisation of the latent space. The richer structure of hadronic showers compared to electromagnetic ones makes their precise modeling an important yet challenging problem. We present initial progress towards accurately simulating the core of hadronic showers in a highly granular scintillator calorimeter.

Publisher

EDP Sciences

Reference34 articles.

1. The ATLAS Fast Monte Carlo Production Chain Project

2. Butter A., Diefenbacher S., Kasieczka G., Nachman B., Plehn T., GAN plifying Event Samples (2020). 2008.06545

3. Goodfellow I.J. et al., Generative Adversarial Nets, in Proceedings of the 27th Interna-tional Conference on Neural Information Processing Systems - Volume 2 (Cambridge, MA, USA, 2014), NIPS'14, p. 2672–2680. 1406.2661, https://dl.acm.org/doi/10.5555/2969033.2969125

4. Kingma D.P., Welling M., Auto-Encoding Variational Bayes (2014). 1312.6114

5. Huang C., Krueger D., Lacoste A., Courville A.C., Neural Autoregressive Flows (2018), CoRR. 1804.00779

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3