Integrating LHCb workflows on HPC resources: status and strategies

Author:

Stagni Federico,Valassi Andrea,Romanovskiy Vladimir

Abstract

High Performance Computing (HPC) supercomputers are expected to play an increasingly important role in HEP computing in the coming years. While HPC resources are not necessarily the optimal fit for HEP workflows, computing time at HPC centers on an opportunistic basis has already been available to the LHC experiments for some time, and it is also possible that part of the pledged computing resources will be offered as CPU time allocations at HPC centers in the future. The integration of the experiment workflows to make the most efficient use of HPC resources is therefore essential. This paper describes the work that has been necessary to integrate LHCb workflows at a specific HPC site, the Marconi-A2 system at CINECA in Italy, where LHCb benefited from a joint PRACE (Partnership for Advanced Computing in Europe) allocation with the other Large Hadron Collider (LHC) experiments. This has required addressing two types of challenges: on the software application workloads, for optimising their performance on a many-core hardware architecture that differs significantly from those traditionally used in WLCG (Worldwide LHC Computing Grid), by reducing memory footprint using a multi-process approach; and in the distributed computing area, for submitting these workloads using more than one logical processor per job, which had never been done yet in LHCb.

Publisher

EDP Sciences

Reference21 articles.

1. Stagni F. et al., DIRACGrid/DIRAC (2018). https://doi.org/10.5281/zenodo.1451647

2. LHCb Coll., LHCbDIRAC (2018). https://doi.org/10.5281/zenodo.1451768

3. Boccali T. et al., Extension of the INFN Tier-1 on a HPC system, to appear in Proc. CHEP2019, Adelaide (2019). https://indico.cern.ch/event/773049/contributions/3474805

4. The LHCb Simulation Application, Gauss: Design, Evolution and Experience

5. Distributing LHC application software and conditions databases using the CernVM file system

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3