DAQExpert the service to increase CMS data-taking efficiency

Author:

Badaro Gilbert,Behrens Ulf,Branson James,Brummer Philipp,Cittolin Sergio,Da Silva-Gomes Diego,Darlea Georgiana-Lavinia,Deldicque Christian,Dobson Marc,Doualot Nicolas,Fulcher Jonathan Richard,Gigi Dominique,Gladki Maciej,Glege Frank,Golubovic Dejan,Gomez-Ceballos Guillelmo,Hegeman Jeroen,James Thomas Owen,Li Wei,Mecionis Audrius,Meijers Frans,Meschi Emilio,Mommsen Remigius K.,Mor Keyshav,Morovic Srecko,Orsini Luciano,Papakrivopoulos Ioannis,Paus Christoph,Petrucci Andrea,Pieri Marco,Rabady Dinyar,Raychino Kolyo,Racz Attila,Rodriguez-Garcia Alvaro,Sakulin Hannes,Schwick Christoph,Simelevicius Dainius,Soursos Panagiotis,Stahl Andre,Stankevicius Mantas,Suthakar Uthayanath,Vazquez-Velez Cristina,Zahid Awais,Zejdl Petr

Abstract

The Data Acquisition (DAQ) system of the Compact Muon Solenoid (CMS) experiment at the LHC is a complex system responsible for the data readout, event building and recording of accepted events. Its proper functioning plays a critical role in the data-taking efficiency of the CMS experiment. In order to ensure high availability and recover promptly in the event of hardware or software failure of the subsystems, an expert system, the DAQ Expert, has been developed. It aims at improving the data taking efficiency, reducing the human error in the operations and minimising the on-call expert demand. Introduced in the beginning of 2017, it assists the shift crew and the system experts in recovering from operational faults, streamlining the post mortem analysis and, at the end of Run 2, triggering fully automatic recovery without human intervention. DAQ Expert analyses the real-time monitoring data originating from the DAQ components and the high-level trigger updated every few seconds. It pinpoints data flow problems, and recovers them automatically or after given operator approval. We analyse the CMS downtime in the 2018 run focusing on what was improved with the introduction of automated recovery; present challenges and design of encoding the expert knowledge into automated recovery jobs. Furthermore, we demonstrate the web-based, ReactJS interfaces that ensure an effective cooperation between the human operators in the control room and the automated recovery system. We report on the operational experience with automated recovery.

Publisher

EDP Sciences

Reference19 articles.

1. CMS Collaboration, JINST 3 S08004 (2008)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of the CMS detector for the CERN LHC Run 3;Journal of Instrumentation;2024-05-01

2. Data Acquisition System for the COMPASS++/ AMBER Experiment;IEEE Transactions on Nuclear Science;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3