ESCAPE prototypes a data infrastructure for open science

Author:

Bolton Rosie,Campana Simone,Ceccanti Andrea,Espinal Xavier,Fkiaras Aristeidis,Fuhrmann Patrick,Grange Yan

Abstract

The European-funded ESCAPE project will prototype a shared solution to computing challenges in the context of the European Open Science Cloud. It targets Astronomy and Particle Physics facilities and research infrastructures and focuses on developing solutions for handling Exabyte scale datasets. The DIOS work package aims at delivering a Data Infrastructure for Open Science. Such an infrastructure would be a non HEP specific implementation of the data lake concept elaborated in the HSF Community White Paper and endorsed in the WLCG Strategy Document for HL-LHC. The science projects in ESCAPE are in different phases of evolution. While HL-LHC can leverage 15 years of experience of distributed computing in WLCG, other sciences are building now their computing models. This contribution describes the architecture of a shared ecosystem of services fulfilling the needs in terms of data organisation, management and access for the ESCAPE community. The backbone of such a data lake will consist of several storage services operated by the partner institutes and connected through reliable networks. Data management and organisation will be orchestrated through Rucio. A layer of caching and latency hiding services, supporting various access protocols will serve the data to heterogeneous facilities, from conventional Grid sites to HPC centres and Cloud providers. The authentication and authorisation system will be based on tokens. For the success of the project, DIOS will integrate open source solutions which demonstrated reliability and scalability as at the multi petabyte scale. Such services will be configured, deployed and complemented to cover the use cases of the ESCAPE sciences which will be further developed during the project.

Publisher

EDP Sciences

Reference23 articles.

1. https://projectescape.eu [accessed 2020-06-05]

2. https://ec.europa.eu/programmes/horizon2020/en [accessed 2020-06-05]

3. https://www.eoscsecretariat.eu [accessed 2020-06-05]

4. http://dcache.org [accessed 2020-06-05]

5. http://lcgdm.web.cern.ch/dpm [accessed 2020-06-05]

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3