Automatic log analysis with NLP for the CMS workflow handling

Author:

Layer Lukas,Abercrombie Daniel Robert,Bakhshiansohi Hamed,Adelman-McCarthy Jennifer,Agarwal Sharad,Hernandez Andres Vargas,Si Weinan,Vlimant Jean-Roch

Abstract

The central Monte-Carlo production of the CMS experiment utilizes the WLCG infrastructure and manages daily thousands of tasks, each up to thousands of jobs. The distributed computing system is bound to sustain a certain rate of failures of various types, which are currently handled by computing operators a posteriori. Within the context of computing operations, and operation intelligence, we propose a Machine Learning technique to learn from the operators with a view to reduce the operational workload and delays. This work is in continuation of CMS work on operation intelligence to try and reach accurate predictions with Machine Learning. We present an approach to consider the log files of the workflows as regular text to leverage modern techniques from Natural Language Processing (NLP). In general, log files contain a substantial amount of text that is not human language. Therefore, different log parsing approaches are studied in order to map the log files’ words to high dimensional vectors. These vectors are then exploited as feature space to train a model that predicts the action that the operator has to take. This approach has the advantage that the information of the log files is extracted automatically and the format of the logs can be arbitrary. In this work the performance of the log file analysis with NLP is presented and compared to previous approaches.

Publisher

EDP Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Transformer Models and Textual Analysis for Log Parsing;2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE);2023-10-09

2. Finding Needle in a Haystack: An Algorithm for Real-Time Log Anomaly Detection with Real-Time Learning;2023 IEEE 34th International Symposium on Software Reliability Engineering Workshops (ISSREW);2023-10-09

3. Security in DevSecOps: Applying Tools and Machine Learning to Verification and Monitoring Steps;Companion of the 2023 ACM/SPEC International Conference on Performance Engineering;2023-04-15

4. Combining Log Files and Monitoring Data to Detect Anomaly Patterns in a Data Center;Computers;2022-07-26

5. Deep Neural Network Based Log Analysis;2021 29th Signal Processing and Communications Applications Conference (SIU);2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3