Fast distributed compilation and testing of large C++ projects

Author:

Matev Rosen

Abstract

High energy physics experiments traditionally have large software codebases primarily written in C++ and the LHCb physics software stack is no exception. Compiling from scratch can easily take 5 hours or more for the full stack even on an 8-core VM. In a development workflow, incremental builds often do not significantly speed up compilation because even just a change of the modification time of a widely used header leads to many compiler and linker invokations. Using powerful shared servers is not practical as users have no control and maintenance is an issue. Even though support for building partial checkouts on top of published project versions exists, by far the most practical development workflow involves full project checkouts because of off-the-shelf tool support (git, intellisense, etc.) This paper details a deployment of distcc, a distributed compilation server, on opportunistic resources such as development machines. The best performance operation mode is achieved when preprocessing remotely and profiting from the shared CernVM File System. A 10 (30) fold speedup of elapsed (real) time is achieved when compiling Gaudi, the base of the LHCb stack, when comparing local compilation on a 4 core VM to remote compilation on 80 cores, where the bottleneck becomes non-distributed work such as linking. Compilation results are cached locally using ccache, allowing for even faster rebuilding. A recent distributed memcached-based shared cache is tested as well as a more modern distributed system by Mozilla, sccache, backed by S3 storage. These allow for global sharing of compilation work, which can speed up both central CI builds and local development builds. Finally, we explore remote caching and execution services based on Bazel, and how they apply to Gaudi-based software for distributing not only compilation but also linking and even testing.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3