Evaluation of the ATLAS model for remote access to database resident information for LHC Run 3

Author:

Gallas Elizabeth J,Dimitrov Gancho

Abstract

The ATLAS model for remote access to database resident information relies upon a limited set of dedicated and distributed Oracle database repositories complemented with the deployment of Frontier system infrastructure on the WLCG (Worldwide LHC Computing Grid). ATLAS clients with network access can get the database information they need dynamically by submitting requests to a Squid proxy cache server in the Frontier network which provides results from its cache or passes new requests along the network to launchpads co-located at one of the Oracle sites (the master Oracle database at CERN or one of the Tier 1 Oracle database replicas). Since the beginning of LHC Run 1, the system has evolved in terms of client, Squid, and launchpad optimizations but the distribution model has remained fundamentally unchanged. On the whole, the system has been broadly successful in providing data to clients with relatively few disruptions even while site databases were down due to overall redundancy. At the same time, its quantitative performance characteristics, such as the global throughput of the system, the load distribution between sites, and the constituent interactions that make up the whole, were largely unknown. But more recently, information has been collected from launchpad and Squid logs into an Elasticsearch repository which has enabled a wide variety of studies of various aspects of the system. This contribution*** will describe dedicated studies of the data collected in Elasticsearch over the previous year to evaluate the efficacy of the distribution model. Specifically, we will quantify any advantages that the redundancy of the system offers as well as related aspects such as the geographical dependence of wait times seen by clients in getting a response to its requests. These studies are essential so that during LS2 (the long shutdown between LHC Run 2 and Run 3), we can adapt the system in preparation for the expected increase in the system load in the ramp up to Run 3 operations.

Publisher

EDP Sciences

Reference16 articles.

1. ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider” JINST 3 S08003 (2008)

2. Oracle Database, http://www.oracle.com

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3