The evolution of the ALICE O2 monitoring system

Author:

Wegrzynek Adam,Vino Gioacchino

Abstract

The ALICE Experiment was designed to study the physics of strongly interacting matter with heavy-ion collisions at the CERN LHC. A major upgrade of the detector and computing model (O2, Offline-Online) is currently ongoing. The ALICE O2 farm will consist of almost 1000 nodes enabled to read out and process on-the-fly about 27 Tb/s of raw data. To efficiently operate the experiment and the O2 facility a new monitoring system was developed. It will provide a complete overview of the overall health, detect performance degradation and component failures by collecting, processing, storing and visualising data from hardware and software sensors and probes. The core of the system is based on Apache Kafka ensuring high throughput, fault-tolerant and metric aggregation, processing with the help of Kafka Streams. In addition, Telegraf provides operating system sensors, InfluxDB is used as a time-series database, Grafana as a visualisation tool. The above tool selection evolved from the initial version where collectD was used instead of Telegraf, and Apache Flume together with Apache Spark instead of Apache Kafka.

Publisher

EDP Sciences

Reference22 articles.

1. ALICE Collaboration, Technical Design Report for the Upgrade of the Online–Offline Computing System, CERN-LHCC-2015-006 (2015)

2. ALICE O2 monitoring library, https://github.com/AliceO2Group/Monitoring, accessed 2020-01-19

3. Telegraf, https://www.influxdata.com/time-series-platform/telegraf/, accessed 202001-23

4. InfluxDB line protocol tutorial – InfluxData Documentation, https://docs.influxdata.com/influxdb/v1.7/write_protocols/line_protocol_tutorial/, accessed 2020-01-23

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud‐based video streaming services: Trends, challenges, and opportunities;CAAI Transactions on Intelligence Technology;2024-03-14

2. The new ALICE data acquisition system (O2/FLP) for LHC Run 3;EPJ Web of Conferences;2024

3. Bookkeeping, a new logbook system for ALICE;EPJ Web of Conferences;2024

4. HPC TaskMaster – Task Efficiency Monitoring System for the Supercomputer Center;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3