Marginalization methods for the production of conservative covariance on nuclear data

Author:

Tamagno Pierre

Abstract

The production of evaluated nuclear data consists not only in the determination of best estimate values for the quantities of interest but also on the estimation of the related uncertainties and correlations. When nuclear data are evaluated with underlying nuclear reaction models, model parameters are expected to synthesize all the information that is extracted from the experimental data they are adjusted on. When dealing with models with a small number of parameters compared to the number of experimental data points – e.g. in resonant cross section analysis – one sometimes faces excessively small evaluated uncertainty compared for instance with model/experimental data agreement. To solve this issue, an attempt was to propagate the uncertainty coming from experimental parameters involved in the data reduction process on the nuclear physics model parameters. It pushed experimentalists to separately supply random (statistical) and systematic uncertainties. It also pushed evaluators to include or mimic the data reduction process in the evaluation. In this way experimental parameters – also called nuisance parameters – could be used to increase evaluated parameter uncertainty through marginalization techniques. Two of these methods: Matrix and Bayesian marginalizations – respectively called sometimes Analytical and Monte-Carlo Marginalizations – that are currently used for evaluation will be discussed here and some limitations highlighted. A third alternative method, also based on a Bayesian approach but using the spectral decomposition of the correlation matrix, is also presented on a toy model, and on a a simple case of resonant cross section analysis.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3