Characterization and performance of an acoustic sensor for fission gas release characterization devoted to JHR environment measurements

Author:

Baudry F.,Rosenkrantz E.,Combette P.,Fourmentel D.,Destouches C.,Bonzon P.V.,Paumel K.,Ferrandis J.Y.

Abstract

For over a decade, the IES laboratory has been working in collaboration with the CEA on the development of acoustic instrumentation in the nuclear field. As part of this collaboration, the IES acoustics team is developing a miniaturized gas composition sensor for in situ measurements of gas composition in a fuel rod. The first experimental use of an acoustic sensor to measure gas composition dates back to 2010 with the REMORA 3 experiment, which estimated the release of fission gas in an experimental fuel rod. Unlike the sensor tested during REMORA 3, this new sensor should be able to operate at 300°C, a performance made possible by the use of a piezoelectric element based on bismuth titanate (NBT). The material is screen-printed onto an alumina substrate. The manufacturing process and initial characterization were presented in the previous version of ANIMMA 2021 [1]. In this article, we will focus on the performance of this type of sensor by characterizing different gas mixtures representative of the gases inside a fuel rod, in order to estimate relative deviations under laboratory conditions.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3