Pure Beta Emitters in Water Samples from Neutron Irradiation Facilities: Activity Determination Via Vacuum Distillation and Liquid Scintillation Counting

Author:

Masci D.,Ferri D.,Gandolfo G.,Lepore L.,Contessa G.M.,Pietropaolo A.,Pillon M.,Marzo G.A.

Abstract

In the decommissioning of nuclear facilities, it is necessary to assess the radioactivity inventory for waste classification and management. For nuclear fusion experiments or accelerator-driven neutron sources, the main contribution to the radiological inventory comes from activation products and tritium. When water is used as coolant of components, it may be activated by neutrons with the consequent production of tritium, and short-lived oxygen and nitrogen isotopes. In most cases several chemical elements may be in solution or suspension in water, because of metallic pipes corrosion when occurring, or functional reasons, e.g. chemical conditioning, addition of antifreeze agent, etc. In this case other activation products could be present and need to be characterized. In this case study, a sample of the coolant of the ENEA Frascati Neutron Generator (FNG) has been radiologically, chemically and physically characterized. In such a facility, during the operation, a beam of deuterons is accelerated up to 300 keV and impacts on a tritiated target for producing 14 MeV neutrons exploiting the fusion reaction T(d,n)α. To avoid overheating in the area around the target, a water-cooling loop is used. After several years of operation, a sample of the fluid has been extracted to undergo a qualitative and quantitative analysis of the radionuclides inventory. Gamma spectrometry has not shown any presence of gamma emitters. On the other hand, Liquid Scintillation Counting (LSC) has provided evidence of the presence of beta emitters. It is known that tritium is expected to occur in the sample because of releases from the tritiated titanium target. This work concerns the development of a method to discriminate the tritium contribution with respect to the total beta activity within the FNG coolant. Since it is known that an unspecified percentage of an unknown anticorrosive agent was added to the water coolant, vacuum distillation has been used to extract purified water (containing only tritium) from the coolant sample leaving any (activated) non-volatile compound in the undistilled fraction. After distillation, any fraction has been investigated by Raman spectroscopy, to determine: a) the chemical composition of the colored anticorrosive agent, b) the efficiency of the separation. Afterwards, both fractions have been analysed by means of LSC, and results showed that the main contribution to sample activity is due to tritium and the activity values are consistent with the theoretical H atomic concentration in both fractions.

Publisher

EDP Sciences

Subject

General Medicine

Reference8 articles.

1. Sandri S.; Contessa G. M.; Guardati M.; Mariano G.; Villari R., “The radiological source terms in a nuclear fusion experimental facility”, Proceedings of the 15th International Congress of the International Radiation Protection Association, January, 2021.

2. Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems

3. Raman and infrared spectra of ethylene glycol

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3