Using a Neural Network to Approximate the Negative Log Likelihood Function

Author:

Liu Shenghua,Jamieson Nathan,Lannon Kevin,Mohrman Kelci,Negash Sirak,Wan Yuyi,Yates Brent

Abstract

An increasingly frequent challenge faced in HEP data analysis is to characterize the agreement between a prediction that depends on a dozen or more model parameters—such as predictions coming from an effective field theory (EFT) framework—and the observed data. Traditionally, such characterizations take the form of a negative log likelihood (NLL) function, which can only be evaluated numerically. The lack of a closed-form description of the NLL function makes it difficult to convey results of the statistical analysis. Typical results are limited to extracting “best fit” values of the model parameters and 1D intervals or 2D contours extracted from scanning the higher dimensional parameter space. It is desirable to explore these high-dimensional model parameter spaces in more sophisticated ways. One option for overcoming this challenge is to use a neural network to approximate the NLL function. This approach has the advantage of being continuous and differentiable by construction, which are essential properties for an NLL function and may also provide useful handles in exploring the NLL as a function of the model parameters. In this talk, we describe the advantages and limitations of this approach in the context of applying it to a CMS data analysis using the framework of EFT.

Publisher

EDP Sciences

Reference5 articles.

1. Search for new physics in top quark production with additional leptons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV using effective field theory

2. The DNNLikelihood: enhancing likelihood distribution with Deep Learning

3. Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L. et al., in Advances in Neural Information Processing Systems 32 (Curran Associates, Inc., 2019), pp. 8024–8035, http://papers.neurips.cc/pa per/9015-pytorch-an-imperative-style-high-performance-deep-learnin g-library.pdf

4. TensorFlow Developers, TensorFlow (2023), https://doi.org/10.5281/zenodo.8 306789

5. Bai J., Lu F., Zhang K. et al., ONNX: Open neural network exchange, https://github.com/onnx/onnx (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3