Generalizing mkFit and its Application to HL-LHC

Author:

Cerati Giuseppe,Elmer Peter,Gartung Patrick,Giannini Leonardo,Kortelainen Matti,Krutelyov Vyacheslav,Lantz Steven,Masciovecchio Mario,Reid Tres,Reinsvold Hall Allison,Riley Daniel,Tadel Matevž,Vourliotis Emmanouil,Wittich Peter,Yagil Avi

Abstract

mkFit is an implementation of the Kalman filter-based track reconstruction algorithm that exploits both threadand data-level parallelism. In the past few years the project transitioned from the R&D phase to deployment in the Run-3 offline workflow of the CMS experiment. The CMS tracking performs a series of iterations, targeting reconstruction of tracks of increasing difficulty after removing hits associated to tracks found in previous iterations. mkFit has been adopted for several of the tracking iterations, which contribute to the majority of reconstructed tracks. When tested in the standard conditions for production jobs, speedups in track pattern recognition are on average of the order of 3.5x for the iterations where it is used (3-7x depending on the iteration). Multiple factors contribute to the observed speedups, including vectorization and a lightweight geometry description, as well as improved memory management and single precision. Efficient vectorization is achieved with both the icc and the gcc (default in CMSSW) compilers and relies on a dedicated library for small matrix operations, Matriplex, which has recently been released in a public repository. While the mkFit geometry description already featured levels of abstraction from the actual Phase-1 CMS tracker, several components of the implementations were still tied to that specific geometry. We have further generalized the geometry description and the configuration of the run-time parameters, in order to enable support for the Phase-2 upgraded tracker geometry for the HL-LHC and potentially other detector configurations. The implementation strategy and high-level code changes required for the HL-LHC geometry are presented. Speedups in track building from mkFit imply that track fitting becomes a comparably time consuming step of the tracking chain. Prospects for an mkFit implementation of the track fit are also discussed.

Publisher

EDP Sciences

Reference9 articles.

1. CMS Collaboration, Development of the CMS detector for the CERN LHC Run 3, arXiv:2309.05466 [physics.ins-det] (2023) https://arxiv.org/abs/2309.05466

2. Speeding up particle track reconstruction using a parallel Kalman filter algorithm

3. Parallelized and Vectorized Tracking Using Kalman Filters with CMS Detector Geometry and Events

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3