Computing Challenges for the Einstein Telescope project

Author:

Bagnasco Stefano,Bozzi Antonella,Fragos Tassos,Gonzalvez Alba,Hahn Steffen,Hemming Gary,Lavezzi Lia,Laycock Paul,Merino Gonzalo,Pardi Silvio,Schramm Steven,Stahl Achim,Tanasijczuk Andres,Tonello Nadia,Vallero Sara,Veitch John,Verdier Patrice

Abstract

The discovery of gravitational waves, first observed in September 2015 following the merger of a binary black hole system, has already revolutionised our understanding of the Universe. This was further enhanced in August 2017, when the coalescence of a binary neutron star system was observed both with gravitational waves and a variety of electromagnetic counterparts; this joint observation marked the beginning of gravitational multimessenger astronomy. The Einstein Telescope, a proposed next-generation ground-based gravitational-wave observatory, will dramatically increase the sensitivity to sources: the number of observations of gravitational waves is expected to increase from roughly 100 per year to roughly 100’000 per year, and signals may be visible for hours at a time, given the low frequency cutoff of the planned instrument. This increase in the number of observed events, and the duration with which they are observed, is hugely beneficial to the scientific goals of the community but poses a number of significant computing challenges. Moreover, the currently used computing algorithms do not scale to this new environment, both in terms of the amount of resources required and the speed with which each signal must be characterised. This contribution will discuss the Einstein Telescope's computing challenges, and the activities that are underway to prepare for them. Available computing resources and technologies will greatly evolve in the years ahead, and those working to develop the Einstein Telescope data analysis algorithms will need to take this into account. It will also be important to factor into the initial development of the experiment's computing model the availability of huge parallel HPC systems and ubiquitous Cloud computing; the design of the model will also, for the first time, include the environmental impact as one of the optimisation metrics.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3