Towards a container-based architecture for CMS data acquisition

Author:

Amoiridis Vassileios,Behrens Ulf,Bocci Andrea,Branson James,Brummer Philipp,Cano Eric,Cittolin Sergio,Da Silva Almeida Da Quintanilha Joao,Darlea Georgiana-Lavinia,Deldicque Christian,Dobson Marc,Dvorak Antonin,Gigi Dominique,Glege Frank,Gomez-Ceballos Guillelmo,Gorniak Patrycja,Gutić Neven,Hegeman Jeroen,Izquierdo Moreno Guillermo,James Thomas Owen,Karimeh Wassef,Kartalas Miltiadis,Krawczyk Rafał Dominik,Li Wei,Long Kenneth,Meijers Frans,Meschi Emilio,Morović Srećko,Orsini Luciano,Paus Christoph,Petrucci Andrea,Pieri Marco,Rabady Dinyar Sebastian,Racz Attila,Rizopoulos Theodoros,Sakulin Hannes,Schwick Christoph,Šimelevičius Dainius,Tzanis Polyneikis,Vazquez Velez Cristina,Žejdl Petr,Zhang Yousen,Zogatova Dominika

Abstract

The CMS data acquisition (DAQ) is implemented as a service-oriented architecture where DAQ applications, as well as general applications such as monitoring and error reporting, are run as self-contained services. The task of deployment and operation of services is achieved by using several heterogeneous facilities, custom configuration data and scripts in several languages. In this work, we restructure the existing system into a homogeneous, scalable cloud architecture adopting a uniform paradigm, where all applications are orchestrated in a uniform environment with standardized facilities. In this new paradigm DAQ applications are organized as groups of containers and the required software is packaged into container images. Automation of all aspects of coordinating and managing containers is provided by the Kubernetes environment, where a set of physical and virtual machines is unified in a single pool of compute resources. We demonstrate that a container-based cloud architecture provides an acrossthe-board solution that can be applied for DAQ in CMS. We show strengths and advantages of running DAQ applications in a container infrastructure as compared to a traditional application model.

Publisher

EDP Sciences

Reference24 articles.

1. CMS, The Compact Muon Solenoid: technical proposal (CERN, Geneva, 1994), http://cds.cern.ch/record/290969

2. The CMS Collaboration, Development of the CMS detector for the CERN LHC Run 3 (2023), CERN-EP-2023-136, submitted to JINST

3. Pettersson T.S., Lefèvre P. (LHC Study Group), The Large Hadron Collider: conceptual design (1995), http://cds.cern.ch/record/291782

4. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Service Oriented Architecture For Knowledge Acquisition and Aggregation;2024 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA);2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3