Use of Anomaly Detection algorithms to unveil new physics in Vector Boson Scattering

Author:

Lavizzari Giulia,Boldrini Giacomo,Gennai Simone,Govoni Pietro

Abstract

A new methodology to improve the sensitivity to new physics contributions to the Standard Model processes at LHC is presented. A Variational AutoEncoder trained on Standard Model processes is used to identify Effective Field Theory contributions as anomalies. While the output of the model is supposed to be very similar to the inputs for Standard Model events, it is expected to deviate significantly for events generated through new physics processes. The reconstruction loss can then be used to select a signal enriched region which is by construction independent of the nature of the chosen new physics process. In order to improve further the discrimination power, an adversarial layer is introduced with a cross entropy term added to the loss function, optimizing at the same time the reconstruction of the input variables of the Standard Model and classification of new physics processes. This procedure ensures that the model is optimized for discrimination, with a small price in terms of model dependency to physics process. In this work I will discuss in detail the above-mentioned method using generator level Vector Boson Scattering events produced at LHC assuming an integrated luminosity of 350/fb.

Publisher

EDP Sciences

Reference19 articles.

1. ATLAS Collaboration, Phys.Lett.B 716 (2012) 1-29.

2. CMS Collaboration, Phys.Lett.B 716 (2012) 30-61.

3. Perez Adan D (on behalf of the ATLAS and CMS Collaborations), Rencontres de Moriond 2022: Proceedings of the ElectroWeak Session (2022, La Thuile, Italy).

4. LHCb Collaboration, Eur. Phys. J. C 83 (2023) 543.

5. Koren S, arXiv e-prints (2020) 2009.11870v1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3