Scalable training on scalable infrastructures for programmable hardware

Author:

Lorusso Marco,Bonacorsi Daniele,Travaglini Riccardo,Salomoni Davide,Veronesi Paolo,Michelotto Diego,Mariotti Mirko,Bianchini Giulio,Costantini Alessandro,Duma Doina Cristina

Abstract

Machine learning (ML) and deep learning (DL) techniques are increasingly influential in High Energy Physics, necessitating effective computing infrastructures and training opportunities for users and developers, particularly concerning programmable hardware like FPGAs. A gap exists in accessible ML/DL on FPGA tutorials catering to diverse hardware specifications. To bridge this gap, collaborative efforts by INFN-Bologna, the University of Bologna, and INFN-CNAF produced a pilot course using virtual machines, inhouse cloud platforms, and AWS instances, utilizing Docker containers for interactive exercises. Additionally, the Bond Machine software ecosystem, capable of generating FPGA-synthesizable computer architectures, is explored as a simplified approach for teaching FPGA programming.

Publisher

EDP Sciences

Reference11 articles.

1. Zhang D., Mishra S., Brynjolfsson E., Etchemendy J., Ganguli D., Grosz B., Lyons T., Manyika J., Niebles J.C., Sellitto M. et al., The AI Index 2021 Annual Report (AI Index Steering Committee, Human-Centered AI Institute, Stanford University, 2021)

2. Hauck S., DeHon A., Reconfigurable computing: the theory and practice of FPGA-based computation, Systems on Silicon (Morgan Kaufmann, 2008), ISBN 9780123705228

3. Fast inference of deep neural networks in FPGAs for particle physics

4. Machine learning techniques with fpga devices for particle physics experiments https://agenda.infn.it/event/15116/

5. Coussy P., Morawiec A., High-Level Synthesis: From Algorithm to Digital Circuits (2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3