Track reconstruction for the ATLAS Phase-II Event Filter using GNNs on FPGAs

Author:

Dittmeier Sebastian

Abstract

The High-Luminosity LHC (HL-LHC) will provide an order of magnitude increase in integrated luminosity and enhance the discovery reach for new phenomena. The increased pile-up necessitates major upgrades to the ATLAS detector and trigger. The Phase-II trigger will consist of two levels, a hardware-based Level-0 trigger and an Event Filter (EF) with tracking capabilities. Within the Trigger and Data Acquisition group, a heterogeneous computing farm consisting of CPUs and potentially GPUs and/or FPGAs is under study, together with the use of modern machine learning algorithms such as Graph Neural Networks (GNNs). GNNs are a powerful class of geometric deep learning methods for modelling spatial dependencies via message passing over graphs. They are well-suited for track reconstruction tasks by learning on an expressive structured graph representation of hit data and considerable speedup over CPU-based execution is possible on FPGAs. The focus of this publication is a study of track reconstruction for the Phase-II EF system using GNNs on FPGAs. We explore each of the steps in a GNN-based EF tracking pipeline: graph construction, edge classification using an interaction network, and track reconstruction. Several methods and hardware platforms are under evaluation, studying resource utilisation and minimization of model size using quantization aware training, while simultaneously retaining high track reconstruction efficiency and low fake rates required for the EF tracking system.

Publisher

EDP Sciences

Reference38 articles.

1. ATLAS TDAQ Collaboration, The ATLAS Trigger/DAQ Authorlist, version 14, ATL-COM-DAQ-2022-127, CERN, Geneva, 2022, https://cds.cern.ch/record/ 2842310

2. Zurbano Fernandez I. et al., CERN-2020-010 (2020)

3. ATLAS Collaboration, CERN-LHCC-2015-020 (2015)

4. ATLAS Collaboration, CERN-LHCC-2017-021 (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3