Automatic Monitoring of Large-Scale Computing Infrastructure

Author:

Kim Bockjoo,Bourilkov Dimitri

Abstract

Modern distributed computing systems produce large amounts of monitoring data. For these systems to operate smoothly, underperforming or failing components must be identified quickly, and preferably automatically, enabling the system managers to react accordingly. In this contribution, we analyze jobs and transfer data collected in the running of the LHC computing infrastructure. The monitoring data is harvested from the Elasticsearch database and converted to formats suitable for further processing. Based on various machine and deep learning techniques, we develop automatic tools for continuous monitoring of the health of the underlying systems. Our initial implementation is based on publicly available deep learning tools, PyTorch or TensorFlow packages, running on state-of-the-art GPU systems.

Publisher

EDP Sciences

Reference12 articles.

1. LHC Machine

2. The CMS Collaboration, et. al., The CMS experiment at the CERN LHC, JINST 3 S08004(2008).

3. Dorigo A., Elmer P., Furano F., and Hanushevsky A., Xrootd - A highly scalable architecture for data access, WSEAS Transactions on Computers (2005).

4. Barisits M., et.al., Rucio: Scientifc Data Management, Computing and Software for Big Science (2019) 3:11.

5. Weitzel D., et. al., XRootD Monitoring Collector, https://zenodo.org/record/4670589

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3