Framework for custom event sample augmentations for ATLAS analysis data

Author:

van Gemmeren Peter,Mete Alaettin Serhan,Burzynski Jackson Carl,Catmore James,Heinrich Lukas,Nowak Marcin,Krumnack Nils

Abstract

For HEP event processing, data is typically stored in column-wise synchronized containers, such as most prominently ROOT’s TTree, which have been used for several decades to store by now over 1 exabyte. These containers can combine row-wise association capabilities needed by most HEP event processing frameworks (e.g. Athena for ATLAS) with column-wise storage, which typically results in better compression and more efficient support for many analysis use-cases. One disadvantage is that these containers, TTree in the HEP use-case, require to contain the same attributes for each entry/row (representing events), which can make extending the list of attributes very costly in storage, even if those are only required for a small subsample of events. Since the initial design, the ATLAS software framework features powerful navigational infrastructure to allow storing custom data extensions for subsamples of events in separate, but synchronized containers. This allows adding event augmentations to ATLAS standard data products (such as DAOD-PHYS or PHYSLITE) avoiding duplication of those core data products, while limiting their size increase. For this functionality, the framework does not rely on any associations made by the I/O technology (i.e. ROOT), however it supports TTree friends and builds the associated index to allow for analysis outside of the ATLAS framework. A prototype based on the Long-Lived Particle search is implemented and preliminary results with this prototype will be presented. At this point, augmented data are stored within the same file as the core data. Storing them in separate files will be investigated in future, as this could provide more flexibility, e.g. certain sites may only want a subset of several augmentations or augmentations can be archived to tape once their analysis is complete.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3