Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit

Author:

Singh Garima,Rembser Jonas,Moneta Lorenzo,Lange David,Vassilev Vassil

Abstract

With the growing datasets of current and next-generation HighEnergy and Nuclear Physics (HEP/NP) experiments, statistical analysis has become more computationally demanding. These increasing demands elicit improvements and modernizations in existing statistical analysis software. One way to address these issues is to improve parameter estimation performance and numeric stability using Automatic Differentiation (AD). AD’s computational efficiency and accuracy are superior to the preexisting numerical differentiation techniques, and it offers significant performance gains when calculating the derivatives of functions with a large number of inputs, making it particularly appealing for statistical models with many parameters. For such models, many HEP/NP experiments use RooFit, a toolkit for statistical modeling and fitting that is part of ROOT. In this paper, we report on the effort to support the AD of RooFit likelihood functions. Our approach is to extend RooFit with a tool that generates overheadfree C++ code for a full likelihood function built from RooFit functional models. Gradients are then generated using Clad, a compiler-based source-codetransformation AD tool, using this C++ code. We present our results from applying AD to the entire minimization pipeline and profile likelihood calculations of several RooFit and HistFactory models at the LHC-experiment scale. We show significant reductions in calculation time and memory usage for the minimization of such likelihood functions. We also elaborate on this approach’s current limitations and explain our plans for the future.

Publisher

EDP Sciences

Reference9 articles.

1. Brun R., Rademakers F., Canal P., Naumann A., Couet O., Moneta L., Vassilev V., Linev S., Piparo D., GANIS G. et al., root-project/root: v6.18/02 (2019), https://doi.org/10.5281/zenodo.848818

2. Singh G., Rembser J., Moneta L., Lange D., Vassilev V., Automatic Differentiation of Binned Likelihoods With Roofit and Clad (2023), arXiv:2304.02650

3. Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L. et al., in Advances in Neural Information Processing Systems 32 (Curran Associates, Inc., 2019), pp. 8024–8035, http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library. pdf

4. Sagebaum N.G. M., Albring T., ACM Transactions on Mathematical Software (TOMS) 45 (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3