Job CPU Performance comparison based on MINIAOD reading options: Local versus remote

Author:

Balcas Justas,Newman Harvey,Bhat Preeti P.,Uppalapati Sravya,Moya Andres,Iordache Catalin,Sirvinskas Raimondas

Abstract

A critical challenge of performing data transfers or remote reads is to be as fast and efficient as possible while, at the same time, keeping the usage of system resources as low as possible. Ideally, the software that manages these data transfers should be able to organize them so that one can have them run up to the hardware limits. Significant portions of LHC analysis use the same datasets, running over each file or dataset multiple times. By utilizing "ondemand" based regional caches, we can improve CPU Efficiency and reduce the wide area network usage. Speeding up user analysis and reducing network usage (and hiding latency from jobs by caching most essential files on demand) are significant challenges for HL-LHC, where the data volume increases to an exabyte level. In this paper, we will describe our journey and tests with the CMS XCache project (SoCal Cache), which will compare job performance and CPU efficiency using different storage solutions (Hadoop, Ceph, Local Disk, Named Data Networking). It will also provide insights into our tests over a wide area network and possible storage and network usage savings.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3