Abstract
In 2017, LIGO-Virgo collaborations reported detection of the first neutron star merger event, GW170817, which is accompanied by electromagnetic counterparts from radio to gamma rays. Although high-energy neutrinos were not detected from this event, mergers of neutron stars are expected to produce such high-energy particles. Relativistic jets are launched when neutron stars merge. If the jets contain protons, they can emit high-energy neutrinos through photomeson production. In addition, neutron star mergers produce massive and fast ejecta, which can be a source of Galactic high-energy cosmic rays above the knee. We briefly review what we learned from the multi-messenger event, GW170817, and discuss prospects for multi-messenger detections and hadronic cosmic-ray production related to the neutron star mergers.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献