Gas detection in sodium cooled fast reactors: determination of a transfer function

Author:

Ding C.,Filliatre P.,Desgranges L.

Abstract

To keep the dependability of Sodium Cooled Fast Reactor, the “clean sodium concept” is demanded, which means that the sodium is free from contamination. The release of fission products is searched for by a contamination measuring system. We need to have a comprehensive description of cladding failures and the detection of contamination, including the failure occurrence on the fuel pin, the transfer process through the sodium and cover gas, the measurement efficiency, etc. We aim to identify the important parameters of physical phenomena, with modelling and simulations based on the return of experiments from past reactors such as PHENIX. There have been a total of 15 open pin failures in PHENIX reactor. Through studying these detected signals, we can get a better physical explanation and description of the evolution of failures. The detection system is related to different stages of the evolution of fuel pin, with different types of fission products, various release mechanism and physical properties. During the evolution of the failed fuel pin, gaseous fission products is released on the first stage of failure and the gas detection system is aimed for the gaseous fission products monitoring. We proposed a quantitative modeling of transfer function to describe the time broadening of the gas release from the fuel pin to the detector. The result matches well with PHENIX experiment data, with the same order of magnitude of the time broadening and the same shape of exponential decreasing. A determination of the transfer function of this gas detection system is validated in this paper.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3