Development of a Fast-Spectrum Self-Powered Neutron Detector for Molten Salt Experiments in the Versatile Test Reactor

Author:

Goetz K. C.,Cetiner S. M.,Celik C.

Abstract

The self-powered neutron detector (SPND) is a widely used flux monitor in thermal nuclear reactors. Although this is a mature technology, the current state of the art is tuned for a thermal neutron spectrum, so many of the devices currently in use lack sensitivity to fast neutrons. Because current in SPNDs is produced through nuclear reactions with the neutron flux inside a reactor, sensitivity in SPNDs is determined by the neutron cross section of the neutron-sensitive portion of the detector, termed the emitter. This neutron cross section drops by orders of magnitude between thermal and fast neutron energies for many emitters in currently used SPNDs, with a corresponding drop in current from the detector. This paper discusses efforts to develop a fast-spectrum self-powered neutron detector (FS-SPND) that is sensitive to neutrons with energies ranging from 0.025 eV up to 1 MeV. An in-depth analysis of Evaluated Nuclear Data File (ENDF)/B-VII.1 neutron-capture cross sections was performed, and four new materials were identified that are suitable emitter candidates for use in measuring fast neutrons. All four materials are stable mid-shell nuclei in the region between doubly magic 132Sn and 208Pb. Each candidate was simulated with the Geant4 Monte Carlo simulation toolkit to optimize overall detector efficiency.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3