Advances in Relativistic Fluid Dynamics, Observables, and Applications - In Memoriam Walter Greiner

Author:

Csernai L.P.

Abstract

Walter Greiner was one of the first physicists using Relativistic Fluid Dynamics for High Energy Nuclear Reactions. The present Inertial Confinement Fusion research and development is hindered by hydrodynamic instabilities, occurring at the intense compression of the target fuel by energetic laser beams. The suggested method combines recent advances in two fields: detonations in relativistic fluid dynamics and radiative energy deposition by plasmonic nano-shells. The compression of the target can be negligible and a laser pulse achieves rapid volume ignition, which is as short as the penetration time of the light across the pellet. The reflectivity of the target can be made negligible, and the absorptivity can be increased by one or two orders of magnitude using plasmonic nanoshells embedded in the target fuel. Thus, higher ignition temperature can be achieved with modest compression. The short light pulse can heat most of the interior of the target to the ignition temperature simultaneously. This prevents the development of any kind of instability, which would prevent complete ignition or transition of the target.

Publisher

EDP Sciences

Reference12 articles.

1. Quantitative assessment of increasing complexity

2. Volume ignition via time-like detonation in pellet fusion

3. Csernai L.P.: Introduction to Relativistic Heavy Ion Collisions, (John Wiley & Sons, Cichester, England, 1994);

4. Emission angle dependent pion interferometry at RHIC and beyond

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3