Deformation mechanisms and microplasticity of austenitic TRIP/TWIP steel under flyer plate impact

Author:

Eckner Ralf,Krüger Lutz,Motylenko Mykhaylo,Savinykh Andrey S.,Razorenov Sergey V.,Garkushin Gennady V.

Abstract

Abstract. The focus of this study is on the deformation mechanisms of high-alloy cast austenitic TRIP/TWIP steel with the nominal composition Fe-16Cr-6Mn-6Ni. Due to its chemical composition, the material exhibits a low stacking-fault energy of 17.5 mJ/m2 which facilitates the formation of the deformation-induced γ (fcc) → ε (hep) → α’ (bcc) transformation. Consequently, the steel exhibits a tensile strength of 800 MPa with fracture elongation of 55 % under quasi-static loading. The experiments presented demonstrate the response of this steel to flyer-plate impact (FPI) at room temperature using two different test setups. In the first setup, laser interferometry measurements of the sample free surface were used for determination of the dynamic mechanical properties (Hugoniot elastic limit / HEL. spall strength) after impact with aluminium plates accelerated up to 650 m/s. In the second setup, an experimental shock testing device developed at the Freiberg High-Pressure Research Centre was used for impacting large cylindrical samples without the occurrence of spallation. Subsequently, microstructural investigations were carried out by scanning electron microscopy (SEM) and transmission election microscopy (TEM) in combination with diffraction techniques and magnetic martensite measurements. Their results facilitate the representation of a complete image of deformation mechanisms during shock wave loading.

Publisher

EDP Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3