Effects of microstructure on the dynamic strain aging of ferriticpearlitic steels at high strain rates

Author:

Mardoukhi Ahmad,Rämö Jari,Vuoristo Taina,Roth Amandine,Hokka Mikko,Kuokkala Veli-Tapani

Abstract

This paper presents an experimental study of the effects of dynamic strain aging on the mechanical behavior of selected high carbon and chromium-manganese steels in dynamic loading condition. In ferritic-pearlitic steels, the dynamic strain aging is typically caused by carbon, nitrogen, and possibly some other small solute atoms. Therefore, the thermomechanical treatments affect strongly how strong the dynamic strain aging effect is and at what temperature and strain rate regions the maximum effect is observed. In this work, we present results of the high temperature dynamic compression tests carried out for two different ferritic-pearlitic steels, 16MnCr5 and C60, that were heat treated to produce different microstructure variants of these standard alloys. The microstructures were analyzed using electron microscopy, and the materials were tested with the Split Hopkinson Pressure Bar device at three different strain rates at temperatures ranging from room temperature up to 680 °C to study the effect of the heat treatments and the resulting microstructures on the dynamic behavior of the steels and the dynamic strain aging effect. The results indicate that for both steels, a coarse grain structure has the strongest dynamic strain aging sensitivity at small plastic strains. However, at higher strains, all microstructures show similar strain aging sensitivities.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3