Predicting the high strain rate response of plasticised poly(vinyl chloride) using a fractional derivative model

Author:

Trivedi Akash,Siviour Clive

Abstract

Polymers are frequently used in fields as diverse as aerospace, biomedicine, automotive and in-dustrial vibration damping, where they are often subjected to high strain rate or impact loading. Poly(vinyl chloride) (PVC), and its plasticised variants (PPVC), are just two examples of this broad category of materi-als. Since many polymers exhibit strong rate and temperature dependence, including a low temperature brittle transition, it is extremely important to understand their mechanical responses over a wide range of loading con-ditions.PVC with 60 wt% plasticiser is used in this study, as its highly rubbery nature lends itself well to being used in various load mitigation and energy absorption applications. It is challenging to obtain high strain rate data on rubbery materials using conventional techniques such as the split-Hopkinson (Kolsky) bar. Therefore, alternative approaches are required. Based on previous work developing a framework to predict high rate re-sponseusing a fractional derivative model, Dynamic Mechanical Analysis (DMA) experiments are conducted on the PPVC to construct a master curve of storage modulus. These data are used to part-calibrate a modified Mulliken-Boyce model which also takes into account specimen heating to derive stress-strain relationships at strain rates varying from 0.001 s_1 to 13 500 s_1. This model is further calibrated against experiments conducted in a previous study and shown to provide an excellent description of the behaviour at these rates.

Publisher

EDP Sciences

Reference27 articles.

1. Matthews G., PVC: Production, Properties and Uses, Vol. 587 (The Institute of Materials, 1996)

2. Generation of free radicals at subzero temperatures. III. Polyamine–hydroperoxide–iron system

3. High Strain Rate Mechanics of Polymers: A Review

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3