Determining the relaxation time from a temperature-dependent scan of the neutron spin-echo signal amplitude

Author:

Mamontov Eugene,Zolnierczuk Piotr

Abstract

Temperature-dependent scans of the neutron scattering intensity are commonly employed in high energy-resolution quasielastic measurements. Besides serving as a useful diagnostic tool for identifying the temperature range that could give rise to a measurable relaxation signal, such scans of the “elastic” (resolution-defined) intensity could be employed for determining the temperature at which the relaxation time in the system becomes equal to the resolution-defined characteristic time of the spectrometer measurement. This is a model-independent alternative to the “traditional” approach, when, at a given measurement temperature, the relaxation time in the system is obtained from fitting the full dynamic spectra with a model scattering function. Here we introduce the temperature-dependent scan of the neutron spin-echo signal amplitude. Using a well-characterized system with a complex relaxation pattern, we demonstrate that the relaxation time obtained from the approach proposed herein maps well on the previous “traditionally” measured relaxation times. Thus, despite monitoring a different variable (neutron spin-echo signal amplitude vs. neutron scattering intensity), the benefits of the model-free temperature-dependent scan approach, traditionally utilized in neutron time-of-flight and backscattering experiments, can be extended to measurements of the very slow relaxations assessable only by high-resolution neutron spin-echo.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3