Roughness density effect on turbulent boundary layer evolution

Author:

Yanovych Vitalii,Sokolenko Vasyl,Uruba Václav,Duda Daniel

Abstract

This work aimed to investigate the boundary layer topology over various densities of roughness. For experiments, we used three different surface conditions comprised of rectangular elements with uniform height arranged in staggered rows and covered the entire floor of the wind tunnel. The frontal and plan solidity for each case changed, λf from 0.3 to 1.2 and λp from 1.3 to 4.7, respectively. Also, we used one more surface, without roughness, for comparison. During the experiment, the position of measuring cross-sections varied relative to the inlet, while the free flow velocity was 5 m·s-1. Thus, the corresponding Reynolds number Reτ was from 300 to 1500 (based on boundary layer thickness δ and friction velocity uτ) or Reθ was from 400 to 5500 (based on momentum thickness). To determine the boundary layer topology in streamwise directions, we used a 55P14 miniature hot-wire probe. The obtained data allowed us to estimate patterns of distribution mean velocity profile, streamwise Reynolds stress, and turbulence intensity for different surface cases. In addition, an analysis of the scales of the turbulent flow over different surface types was also carried out. Namely, the integral length scale, Taylor microscale, and dissipation scale were determined. Obtained results show that roughness density composition strongly affects boundary layer characteristics. The obtained results also represent a correlation between the Taylor microscale and the initial position of the log region.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3