Measurements With A Quantum Vision Transformer: A Naive Approach

Author:

Pasquali Dominic,Grossi Michele,Vallecorsa Sofia

Abstract

In mainstream machine learning, transformers are gaining widespread usage. As Vision Transformers rise in popularity in computer vision, they now aim to tackle a wide variety of machine learning applications. In particular, transformers for High Energy Physics (HEP) experiments continue to be investigated for tasks including jet tagging, particle reconstruction, and pile-up mitigation. An improved Quantum Vision Transformer (QViT) with a quantum-enhanced self-attention mechanism is introduced and discussed. A shallow circuit is proposed for each component of self-attention to leverage current Noisy Intermediate Scale Quantum (NISQ) devices. Variations of the hybrid architecture/model are explored and analyzed. The results demonstrate a successful proof of concept for the QViT, and establish a competitive performance benchmark for the proposed design and implementation. The findings also provide strong motivation to experiment with different architectures, hyperparameters, and datasets, setting the stage for implementation in HEP environments where transformers are increasingly used in state of the art machine learning solutions.

Publisher

EDP Sciences

Reference20 articles.

1. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I., Attention Is All You Need (2023), arXiv:1706.03762

2. Brown T.B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A. et al., Language Models are Few-Shot Learners (2020), arXiv:2005.14165

3. LLaMA: Open and Efficient Foundation Language Models, author=Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample (2023), arXiv:2302.13971

4. Devlin J., Chang M.W., Lee K., Toutanova K., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2019), arXiv:1810.04805

5. Li G., Zhao X., Wang X., Quantum Self-Attention Neural Networks for Text Classification (2023), arXiv:2205.05625

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3