Heat Treatment Effect on Magnetic Microstructure of Fe73.9Cu1Nb3Si13.2B8.9 Thin Films

Author:

Mikhalitsyna Evgeniya,Zakharchuk Ivan,Soboleva Ekaterina,Geydt Pavel,Kataev Vasiliy,Lepalovskij Vladimir,Lähderanta Erkki

Abstract

Fe73.9Cu1Nb3Si13.2B8.9 (Finemet) thin films were deposited on the glass substrates by means of radio frequency sputtering. The films thickness was varied from 10 to 200 nm. Heat treatment at temperatures of 350, 400 and 450 °C were performed for 30 minutes in order to control thin film structural state. The X-ray powder diffractometry revealed that the crystallization of α-FeSi nanograins took place only at 450 °C whilst the other samples stayed in the amorphous state. Relation between the structure and magnetic properties of the films was discussed in the framework of random magnetic anisotropy model and the concept of stochastic magnetic domains. The latter was investigated using magnetic force microscopy (MFM). MFM data showed formation of such magnetic domains only in samples thermally treated at 450 °C. There was a tendency of the magnetic domain size reduction with the thickness decrease.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3