Isolation of proximity-induced triplet pairing channel in a superconductor/ferromagnet spin valve

Author:

Kamashev Andrey,Validov Aidar,Garif’yanov Nadir,Fominov Yakov,Leksin Pavel,Schumann Joachim,Thomas Jürgen,Kataev Vladislav,Büchner Bernd,Garifullin Ilgiz

Abstract

In the present work we have studied the proximity-induced superconducting triplet pairing in CoOx/Py1/Cu/Py2/Cu/Pb spin-valve structure (where Py = Ni0:81Fe0:19). For CoOx(3 nm)/Py(3 nm)/Cu(4 nm)/Py(0.6 nm)/Cu(2 nm)/Pb(70 nm) we have studied the dependence of the Tc on the angle α between the direction of the cooling field and the external field both applied in the plane of the sample. We obtained that the Tc does not change monotonically with the angle but passes through a minimum. To observe an “isolated” triplet spin-valve effect we exploited the oscillatory feature of the magnitude of the ordinary spin-valve effect ΔTc in the dependence of the Py2-layer thickness dPy2. We determined the value of dPy2 at which ΔTc caused by the ordinary spin-valve effect is suppressed. This means that the difference in the Tc between the antiparallel and parallel mutual orientation of magnetizations of the Py1 and Py2 layers is zero. For such a sample a “pure” triplet spin-valve effect which causes the minimum in Tc at the orthogonal configuration of magnetizations has been observed.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3