Author:
Tarasov Ivan,Popov Zakhar,Visotin Maxim,Yakovlev Ivan,Varnakov Sergey
Abstract
Optical characteristics (electron energy loss function, optical conductivity σ, permittivity ε, refractive index n, extinction coefficient k, and absorption coefficient α) of a 30 nm thick epitaxial Fe3Si iron silicide films grown at different silicon substrate temperature (26, 100, 200, 300 ˚C) were determined within E = 0.74–6.46 eV photon energy range using spectroscopic ellipsometry technique. The experimental data are compared to the optical characteristics calculated in the framework of the density functional theory using the GGA–PBE approximation. Variations of the optical characteristics spectra are discussed from the point of view of chemical ordering of DO3 type crystal structure. It is asserted that the electron energy-loss function, optical conductivity and extinction coefficient of the Fe3Si iron silicide films undergo noticeable changes in different spectral ranges over the whole spectrum between 0.74 and 6.46 eV due to variation in the chemical order. Information on the effect of chemical ordering on the optical properties obtained here allows one to carry out quick qualitative analysis of Fe3Si film crystal quality during the synthesis procedures by ellipsometry method in situ.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献