Author:
Papaevangelou Thomas,Desforge Daniel,Ferrer-Ribas Esther,Giomataris Ioannis,Godinot Cyprien,Diaz Diego Gonzalez,Gustavsson Thomas,Kebbiri Mariam,Oliveri Eraldo,Resnati Filippo,Ropelewski Leszek,Tsiledakis Georgios,Veenhof Rob,White Sebastian
Abstract
The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate aMicromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkovradiator front window, which produces sufficient UV photons to convert the ∼100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ∼50 primary photoelectrons, using a bulk Micromegas readout.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献